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AbrlraeL We derive an exact sum mle satisfied by Ihe dispersion rrlations of the 
mmmensurable case of Harper’s equation. We Use this mull to derive a lower b u n d  
for the total bandwidth of the spectrum and lo pmvide a stronger analytical justificalion 
for a resull due IO lhouless concerning the total bandwidth when the commensurability 
b a high order rational. 

1. Introduction 

Harper’s equation 

+,+I + $,,-I + 2 a c o s ( 2 a p n  + A)$, = E$n (1.1) 

is a discrete Schrodinger equation which models an electron moving in a plane with 
a perpendicular magnetic field, in a spatially periodic potential (Harper 1955, Rauh 
1974, 1975). It is also (when p is an irrational number) a tight-binding model for 
an electron in an incommensurately modulated potential. The spectrum has some 
interesting properties. When p is an irrational number, the spectrum is generically a 
Cantor set (Azbel’ 1964, Bellissard and Simon 1982). and numerical results indicate 
that when a = 1 (called the critical point) the measure of this set vanishes, and that 
it has a beautiful recursive structure (Hofstadter 1976). When p is the ratio of two 
integers, p = p / q  (where p and q are relatively prime), Bloch’s theorem is applicable 
and the spectrum consists of q bands, with dispersion relations E = ~ , ( k , A ) , u  = 
1,. . . q. Thouless (1983, 1990) has discovered a remarkable property of the total 
bandwidth S (the union of the spectra Over all wlues of A) at the critical point the 
asymptotic behaviour in the limit q - m is independent of p and given by 

(1.2) 

where C = 0.915 965 59 . . , is Catalan’s constant (Abramowitz and Stegun 1972). 
The derivation is based upon a WKB approximation, which is only valid for small p: 
in fact a derivation has only been given for the two special cases p = 1 and p = 2. 
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The extension to general values of p and q does not appear to be easy (Thouless 
1990, Watson 1991, Thouless and Thn 1991a). It is a vely surprising feature of this 
result that although this i~ an asymptotic result and Thouless's derivation depends in 
an essential way upon p being small, numerical results indicate that it holds for all 
rational p with large denominator. 

This paper makes two contributions towards establishing an analytical basis for 
equation (1.2). Firstly (in section 2) we derive an exact equality concerning the 
dispersion relations at the critical point, which holds for all (relatively prime) p, q,  
and which is closely related to (1.2). This equality leads directly (section 3), to the 
lower bound 4 / q  for the total bandwidth at the critical point. Secondly, (in section 
4) we combine this new exact equality with some earlier semiclassical results by one 
of us (Wilkinson 1987), to argue that if (1.2) holds for sequences of rationals obeying 
p,, - 0, then it should also hold for sequences of rationals obeying p', + Po, where 
Po is any Wed rational. Some numerical illustrations of these results are included in 
section 5. 

Y Los1 and M wilknson 

2. An exact sum rule 

The dispersion ,relations for the bands are given by the implicit equation 

P m ( E )  = 2 c o s k q + 2 a . ' c o s A q  (2.1) 

where P, (E)  is a polynomial of degree q (Bellissard and Simon 1982), i.e. 

e v ( k , A )  = f , ( 2 c o s k q + 2 a . ' c o s A q )  (2.2) 

where f,(z) is the vth branch of the inverse function of P,(E) .  We will show that 
when 01 = 1 the derivatives of the function P , ( E )  at its zero crossings satisfy the 
exact equality 

(2.3) 

where E, are the q zeros of P , ( E ) .  This result gives the sum of the curvatures of 
the dispersion relations at the saddle points in k ,A space. It is also clearly closely 
related to (1.2): if we were to approximate P , ( E )  by a linear function with slope 
P;( E,) at each branch, from (2.3) we would estimate that the total bandwidth would 
be 8 / q ,  instead of the expected value 9.329 9.. . / q .  

'Ib prove (2.3) we make use of another exact result previously derived by Avron, 
van Mouche and Simon (1990), for the intersection over A of the band spectra for 
rational p. They show that the total bandwidth of the intersection spectrum S-, for 
a < 1,  is given by the exact result 

S- = 4(1 - a ) .  (2.4) 

From (2.1), we see that the intersection of the bands over A corresponds to values 
of P, (E) in the range 

- 2 ( 1  -a.') 6 P , ( E )  6 2 ( 1 -  a.'). (2.5) 
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In the limit 01 - 1 both S- and this range of PQ( E) vanish, and the total bandwidth 
of the intersection spectrum can be expressed in terms of the derivatives of P a ( E )  
at its zero crossings, in the sense that 

Thus, we have 

(2.7) 

from which (23) follows immediately, 

3. A lower hound on the bandwidth 

The sum rule (2.3) can be used to derive a lower bound on the total bandwidth at 
the critical point. For a = 1, define 

& , ( k ) E e , ( k , k )  = f V ( 4 c o s k q )  (3.1) 

then f v ( k )  is a monotone function of k from the intewal [0, r/q]  onto the uth band. 
The width of this band is given by 

(3.2) 

The function l/lk'{(E)l has a single minimum between every two zeros of P { ( E )  
and it is monotone above and below the extreme zeros of P;(E).  Therefore, it 
has a single minimum on each band (which may be at the edge of the band), and 
since f , ( k )  is monotone, the function l / l P ; ( & v ( k ) ) [  (as a function of IC in the 
interval [ O , r / q ] )  has a single minimum for each band. Since. the zeros {E"}  of 
P,(E) correspond to IC = ~ / 2 q  (i.e. C V ( r / 2 q )  = Ev) ,  this implies that for each 
band, either for all k E [0, ?r /2q ]  (if the minimum occurs for k > 7r/2q),  or for all 
k E [ rr /Zq,  r/q] (if the minimum occurs for IC < ~ / 2 q ) ,  we have 

From (3.5) and the sum rule (23), we obtain 

4 
S > ;  
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4. Further implications for the total bandwidth 

In this section we consider the implications of (2.3) for the total bandwidth in the 
limit q + CO. We start hy making some remarks about the derivation of (1.2). This 
result is derived using a semiclassical pKB) approximation, which assumes that p is 
small. The semiclassical analysis depends on the form of the Hamiltonian function 
corresponding to (Ll), which is (Azbel’ 1964) 

Y Last and M Wlkinson 

H ( ? , p )  = 2cospi + 2acos  2. ( 4 4  

When a = 1, all the contours of the Hamiltonian function are closed curves, except 
for those at the separatrix energy, E = 0. The bandwidth is concentrated at the 
separatrix energy, because at other energies the width of the bands is determined 
by quantum mechanical tunnelling, which implies that the bandwidth is exponentially 
small in l ip (Wilkinson 1984). The derivation of (12) pou!ess !mi wmon 1991) 
depends on a detailed analysis of the behaviour of the wavefunction near the saddle 
points of the Hamiltonian function in phase space, where the quantum mechanical 
Hamiltonian can be approximated by a parabolic cylinder equation. In the region 
between the saddle points the solution is a standard w m  approximation and the 
form of the classical Hamiltonian function only enters via a phase integral, which 
plays no important role in the analysis. It is clear that if the result (1.2) holds 
for Harper’s equation it will also hold for any other Hamiltonian H ( 2 , p )  in which 
the only open phase trajectory forms a simple lattice and in which the form of the 
Hamiltonian at the saddle points is alternately 

H % ( p * - P )  k % ( 2 2 - 2 ; 2 ) ,  ( 4 4  

prOviCed that p B “!!. 
Now we consider how the result (1.2), which is assumed to hold for small p 

(namely, for sequences p,, -+ O ) ,  can be extended to sequences p ,  + Po where 
Po = p o / q o  is any k e d  rational. ’Ib this end we apply the results of (Wilkinson 
1987), who considen the spectrum of an equation of the form of Harper’s equation 
when p is very close to a rational number Po. In this case the spectrum can be 
divided into qo regions, each of which corresponds to the spectrum of an effective 
Hamiltonian H , ( k ’ , p ’ ) .  The effective Hamiltonian is periodic in 2 and p’, and to 
lowest order in 6p I p - Po it corresponds to making the substitutions k + 2 ‘ / q o  
and A + y / q o  in the dispersion relation for the uth band 

m 

.I --_- ..,...- ~I 

= E,(?‘/qo,Fi’/qo) + O(6P).  

The operators 5‘ and p’ satisfy the canonical commutation relation in the form 

(4.3) 

where M ,  is the Chern integer of the band, which can be identified with the quan- 
tised Hall-conductance integer of the uth band in the case where Harper’s equation 
represents a perturbed Landau level (Thouless d a/ 1982). 
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It follows from (2.2) that, if the higher order corrections in 6p are neglected, the 
effective Hamiltonian for the uth band can be written as a function of the original 
Hamiltonian 

H”(*‘,  $ 1 )  = f”( 2 cos 2 + 2 cos $ 1 ) .  (4.5) 

The pattern of the separatrices is therefore the same as for the original Hamiltonian 
and the form of the Hamiltonian at the saddle points is 

H ,  zz f L ( O ) ( f i ‘ 2  - P) H ,  m fL(O)(*” - 1 2 ) .  (4.6) 

From (4.4) we see that p: -+ 0 in the limit p + Po. We can therefore apply the 
result (1.2) to the effective Hamiltonian in this limit: the total bandwidth S, for this 
effective Hamiltonian will therefore obey 

(4.7) 

where pv = p v / q u .  The exact value of q, depends on the Hall-conductance integer 
of the band, but in the limit 6 p  -+ 0 

4”/4 - l l q o  

and thus the total bandwidth satisfies 

3 2 C  tim qS = - 
’I-m A 

(4.9) 

which is the same as (1.2). 
This result shows that if the Thouless conjecture (1.2) can be proved to be valid 

for all sequences p, - 0, then it should be valid for (at least sufficiently rapidly 
converging) sequences p, = p,/q, - po /qo .  Although the possible limiting d u e s  
p,/qo form a dense set, our results do not immediately imply that the result is true 
for all sequences with q, - m. 

5. Numerical illustrations 

In this section we illustrate the formulae (4.3) and (4.4) for the effective Hamiltonian 
describing the splitting of a hand, and the result (4.7) relating the measure contained 
in the uth cluster of bands to the derivative P;( E”) .  

’lb apply (4.4) we first need to identify the Hall-conductance integers of the bands. 
This can be achieved using the gap labelling theorem (Simon 1982), which states that 
the fraction p of the integrated density of states below a given gap can be written as 

Pn.m = n p + m  (5.1) 

where n and m are integers. It follows from the Streda formula (Streda 1982) that 
the integer m is the Hall-conductance integer for the states below the gap. The 
Hall-conductance integer of the uth band can be obtained by taking the difference 
of the values of m for the adjacent gaps. Unfortunately we cannot use this result 
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immediately because when 0 = p , / q ,  is rational the labelling is ambiguous (p is 
unchanged if we take n + n + qo, m - m - p ,). Instead we use a physical argument 
to determine the integers. In the limit Q - 0 the integer n k related to the size 
of the gap: A E  = O ( a n ) ,  Le. the gap first opens at the nth order of perturbation 
theory. When Q is small we expect the gaps to open at the lowest passible value of n 
consistent with (5.1). A result of van Mouche (1989) shows that the gaps of Harper’s 
equation remain open for all values of a (apart from the closed gap at E = 0 for 
even q required by symmetry of the spectrum about E = 0). This shows that the 
labelling at (I = 1 is the same as at small a. For example, when Po = 3/7,  these 
considerations enable us to identify the gap labelling integers for the eight gaps as 

are respectively 1 ,  - 2 , 1 , 1 , 1 ,  - 2 , l .  

the form of a cosine Fourier expansion 

Y Last and M Wkinson 

(0,O) , ( -2 ,1) ,  (3 ,  - 1 ), ( 1 ,  O), (- 1 ,  I), ( -3 ,2) ,  (2 ,  O), (0 ,1) ,  and the d u e s  of M, 

In order to illustrate (4.3) and (4.4) we considered an effective Hamiltonian in 

with (i’,ji’] = 2 mp’ ‘ given by (4.4) and with the coefficients constrained so that 
H,(jr‘,@’) has all of the symmetries of the original Hamiltonian (4.1). When a = 1, 
these symmetries are four-fold rotational symmetry, implying a,,,-,, = an,,, and 
mirror symmetry, implying an,,, = am,n. We used a least-squares program to vary 
the independent coefficients an,,, so that the edges of the bands of H ” ( $ ‘ , @ ‘ )  would 
agree as closely as possible with the edges of the appropriate cluster of subbands of 
the spectrum of Harper’s equation: a finite number of coefficients a,,,, were varied, 
with II = 0 , .  . . , N c ,  m = 0 , .  . . , n. The residue of the least-squares fit, defined as 
the sum of the squares of the deviations of the band edges from their target values, 
was found to approach z r o  rapidly as N,  was increased. 

Figure l(a) and (6) illustrate the correspondence between the spectrum of the 
least-squares fitted H ,  and a subset of the spectrum of Harper’s equation. The 
top row in each of these figures is the full spectrum of Harper’s equation for p = 
314/727, which is close to the low order rational Po = 3/7. When p = 3 / 7  the 
spectrum consists of seven bands, of which the second and sixth have Chem integer 
M ,  = -2  and the remainder have M ,  = 1. Correspondingly, the bands of Harper’s 
equation for p = 314/727 form seven clusters. In figure l(a) the structure of the 
second cluster (bands 100 to 215) is magnified (centre row), and compared with the 
spectrum of an effective Hamiltonian of the form (5.2), with = 17/116 (obtained 
from (4.4)). Similarly, in figure l(b) the spectrum of the third cluster (bands 216 to 
314) is compared with an effective Hamiltonian with = 17/99. In each case the 
Fourier expansion used for the least-squares fit included coefficients up to N ,  = 5 
and an excellent fit of the spectrum is obtained. 

According to ( 4 3 ,  in the limit p + p , / q ,  the Fourier coefficients an,m of the 
effective Hamiltonian should tend towards those of the dispersion relation of the uth 
band defined by 

(5.3) 

The Fourier coefficients a of the effective Hamiltonian were determined numer- 
ically for a sequence of rational p approaching po = 1/3,  for the first band of the nlm 
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spectrum. The results are shown in table 1. The Fourier coefficients a,,,, ap- 
proach the limiting values b,,,, b1,, quoted in the kst column. The a, , ,  and a2,, 
coefficients do not approach the limiting value, but the linear combination 2a, , ,+az , ,  
does approach the expected limit. The reason for this behaviour is that the fit of the 
expansion coefficients an,,, to the spectrum is ill-conditioned. An explanation for 
the invariance of the combination 2a,,, + a2,, is given in the appendix. The data 
shows that the limiting values are approached linearly as a function of Sp z p - Po, 
to within numerical uncertainties, confirming the estimate for the error term in (4.3). 

Y Last and M Wlkinson 

lbbk 1. Fourier mefficients of the effective Hamiltonian for a sequence of rational fl 
approaching Po = 1/3. ?he mefficienls in the last mlumn are those of the Fourier 
expansion of the dispersion lelation. 

B 50/149 99/295 102/307 200/601 113 

ao.0 -2.422970 -2.422893 -2.434221 -2.432422 -2.430548 
D1,O 0.089753 0 .089840  0.086400 0.086921 0.087512 
a1.t 0.011806 0 .010914  0.009668 0.010041 0.009834 
a2,o 0.003343 0 .005135  0.004474 0.004254 0.005 169 
a2,o -F 2 0 1 ~  0.027039 0.026963 0.023810 0.024337 0.024836 

We also performed some numerical tests of the formula (4.7) for the total band- 
widths of the Seven clusters of bands for a sequence of rationals approaching 3 / 7 .  
The results are summarized in table 2, which lists the fraction A, = S,/S of the 
weight of the spectrum in each of the first four bands (the weights of the other bands 
can be obtained from the symmetry of the spectrum about E = 0). The limiting 
values as p -+ Po are given by q, / lP; (E, )I ,  which is tabulated in the last column. 
The table also lists the Thouless number T = qS and the mean absolute fractional 
deviation 6 of the weights A, from their limiting values. The deviation 6 decreases as 
p + Po, but the decrease is not monotonic: the deviation is anomalously large when 
0; is of the form l / q v .  This is presumably related to the fact that the mnvergence 
of qS is slowest when p = 1 (Thouless and B n  1991a). The deviations of qS from 
the limiting value 32C/?i  were discussed by Thouless and ?an (1991b): our results 
confirm their prediction that the deviation is larger when q o p  - p , q  is odd. 

lhbk 2 Fractional wights A, = S,/S of the four lowest dustem of tsnds, for a 
sequence of rational p approaching Po = 3/7. The data in the last mlumn is the 
limiting values predicted from (4.7); 6 is a measure of the average fractional deviation 
from lhese limiting values. 

B 302/705 1 0 5 3 / 2 4 5 6  1723/4021 3433 /8011  3848/8979 3/7 

A1 0.065021 0.065037 0.065438 0.065350 0.064917 0.065260 
A2 0.210 149 0 .209090  0.208277 0.208473 0.209923 0.208670 
A3 0.183597 0.184673 0.184812 0.184776 0.184057 0.184740 
A4 0.082467 0.082401 0.082947 0.082804 0.082205 0.082659 

6 4 .82  x 10-3 2.23 x 10-3 2.12 x 10-3 1.07 x 10-3 5 . 1 2  x  IO-^ - 
~ p -  o0l 2.03 x 10-4 1.75 x 10-4 7.11 x 10-6 3.57 x 10-5 1.59 x 1 0 - ~  - 
rls 9.325255 9.331060 9.329949 9.329953 9.327532 32C/m 
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Appendix 

The fitting of the Fourier coefficients of the effective Hamiltonian (5.2) to the spec- 
t q m  of a subband k ill-conditioned. It is possible to make unitary transformations 
of the effective Hamiltonian (4.3) which leave its form unchanged the Hamiltonian 
remains in the form of a Fourier expansion, but with different coefficients. In this 
appendix we examine the effect of these unitary transformations on the Fourier meffi- 
cients a,,,, in the limit p - Po. Consideration of (4.4) shows that this is a semiclas- 
sical (h -* 0 )  limit and it is therefore most convenient to consider the corresponding 
classical transformation, which is a canonical transformation (2, p) - (z’, p‘). 

In the limit ti -t 0, a canonical transformation of the Hamiltonian H ( z , p )  
changes its spectrum by O ( h 2 ) .  The canonical transformation can therefore be con- 
sidered to be a good approximation to a unitary transformation, which leaves the 
spectrum unchanged. The set of canonical transformations we must consider are 
those which leave the Hamiltonian in the form of a 2lr-periodic function of z and 
p, with four-fold and mirror symmetries. Such a canonical transformation maps the 
set of lines illustrated in figure 2 into itself. The canonical transformations required 
are generated by the action of a Hamiltonian ‘H(z,p) for which this set of lines is a 
level surface. This Hamiltonian can be expanded as follows: 

m n-1 

~ ( z , p )  = c,,,, [sin(nlrz) s in(mlrp)  - sin(mlrz)s in(nlrp)] .  (A*) 
n=om=o 

F@re 2. Canonical transfomalions which leave the Hamiltonian in the form of a 
Fourier wries, with fourfold and mirror symmelries. map this set of lines into itself, ‘this 
is therefore a level 9 1  of the generating Hamiltonian X( T , p ) .  
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The action of this Hamiltonian over a short time 6 r  generates a canonical trans- 
formation of the form 

ax a% 
a p  ax I -+ x'= I + -6r p-p'  = p -  -6r 

which transforms the original Hamiltonian H (  I, p) as follows: 

l i ( r , p )  - -H'(r ,p)  = !!(d,p') = U ( z , p )  + {II,%UJdT (.AS) 

where {., .) denotes a Poisson bracket. 
Tb a good approximation, the higher order Fourier coefficients of H (  I, p) in (4.3) 

are usually very small compared to the (1,O) coefficient. Consider the effect of the 
canonical transformation generated by the term in the expansion (Al) on the 
Hamiltonian H( 2, p) = cos x + cos p: using (A3) 

f f ' (z ,p)  = c o s z + c o s p + 6 s  + c o s ( z + p ) +  f c o s ( z - p ) - c o s 2 z - c o s 2 p  

1 
1 

+ cos(22 + 2 p )  + cos(22 - Z p ) ] .  

- LCoS(z+3p) -  4 i c O s ( 2 - 3 p ) -  iCOS(3f+p)  - , c o s ( 3 2 - p )  

('44) , 

lhbk 3. Illuslrating the ill-mndilioned nature of the Fourier expansaon used Lo fit the 
speclum: the first perturbation is nearly imspeclral, in agreemenl with the analysis 
presented in the appendix. 

Perturbation Residue 

None 2.3 x 10-7 

7.8  x 10-4 

f ( l , l )  - ( 2 , 0 ) +  ( 2 , 2 )  1.2 x 10-4 
-t!3,?!-!2,0!+!2.2) 3 6 U I n - 4  

~ ( 1 , 1 ) - f ( 3 , 1 ) - ( 2 , 0 ) + ( 2 , 2 )  1 . 2 x  
1 ~ ( 1 ~ 1 )  - f ( 3 , 1 )  - ( 2 , O )  
$ ( 1 , 1 ) -  f ( 3 , 1 ) + ( 2 , 2 )  6 . 1  x lo-' 

This result shows that the spectrum will be insensitive to perturbing the Fourier 
coefficients a3,1. a2,2 (and the others related by symmetry) respectively by 
the following multiples of a small number 6s:  i , - l , - i ,  1. 'Eible 3 shows the effect 
of adding this perturbation, which is symbolized by the notation f ( 1 , l )  - (2,O) - 
i ( 3 , l )  + (2 ,2) ,  with a multiplier 6 T  = ?he residue of the least-squares fit 
increases by a much smaller amount than for other comparable perturbations. The 
example here used 0 = ZOO/SOl, Po = 1/3,  fitting the first cluster of bands (1 to 
200)  using coefficients up to N ,  = 5. 

It is easy to confirm that the contribution to (Al) with Fourier coefficient c " , ~  
causes a nearly isospectral perturbation of the Hamiltonian H (  I, p) = cos I + cos p 
with Fourier coefficients ( n- 1 ,  m j , ( n +  1 ,  m) ,  ( n, m- 1)  , ( n , m+ 1 j. it is therefore 
clear that, within the approximations used, the only term in (Al) which affects the 
al, l  and the a2,0 coefficients of H ( c , p )  is the term with coefficient c ~ , ~ .  It follows 
from the isospectral perturbation (A4) that the sum of the coefficients 2al, l  + a2,0 
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is a canonical invariant, for small 6s. This conclusion is confirmed by the data in 
table 1. Invariants involving other combinations of coefficients can be obtained by 
the same method. 
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